

ENERGY STORAGE 101

Jesse Remillard, ERS 38th Utility Energy Forum

WHY ENERGY STORAGE?

Sources: CAISO and ORNL

Definitions and key terminology T = 5 L T Facility vs. grid scale storage

Energy storage technologies

1

2

3

4

Technical and market barriers

KEY TERMINOLOGY

Power/capacity = rated kW

Energy = rated kWh

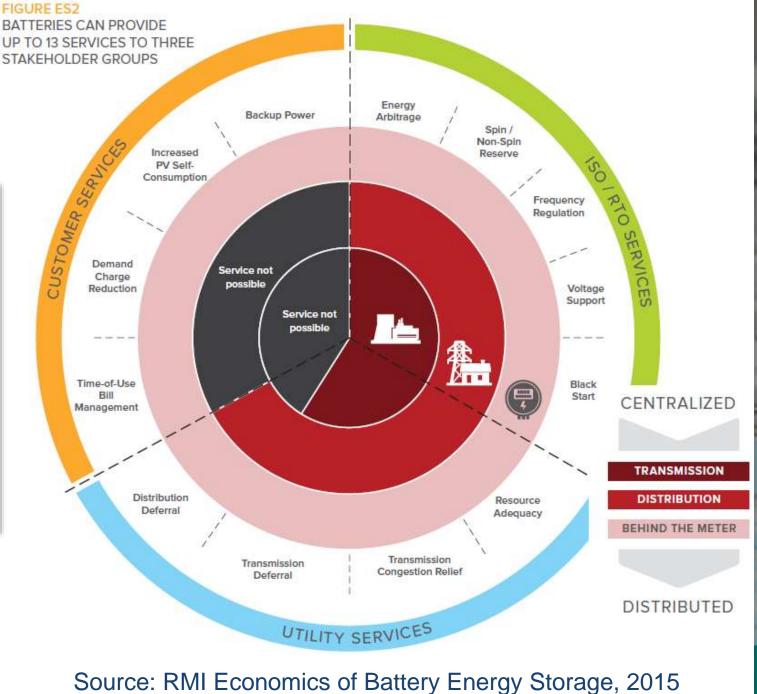
Discharge time = $\frac{\Delta vg}{Avg}$.

Energy capacity

Depth of discharge (DOD) = capacity used

Roundtrip efficiency

Cycle life = number of useful cycles


BTM & FTM = behind and front of the meter

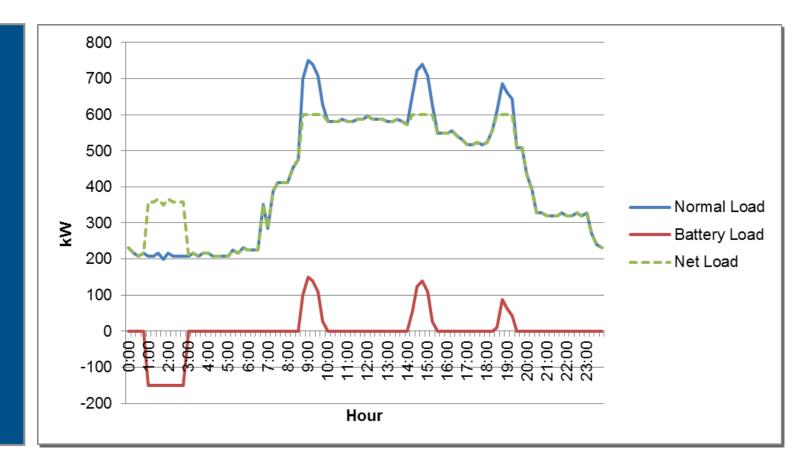
FACILITY VS. GRID SCALE SERVICES

ers

POWER QUALITY AND BACKUP

Systems that require high power quality or uninterruptible power supply (UPS):

- Data centers
- Emergency response
- Medical
- Industrial


UPS systems are very common!

DEMAND CHARGE REDUCTION

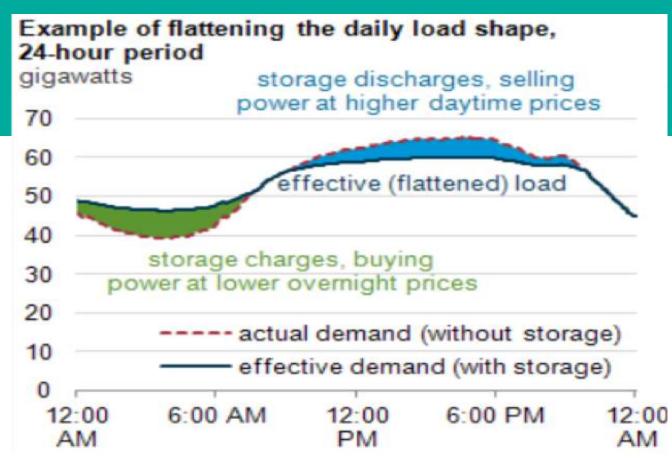
Facilities with > 50% of their electric bill from demand charges are key candidates.

> Simple payback approximately 5 years

DEMAND RESPONSE

Many utilities and independent aggregators incentivize demand reduction during peak demand events

Variety of demand response programs available depending on flexibility of facility and system. P&E base interruptible program (BIP) provides \$8 per kW for systems less than 500 kW.


Monthly incentive payment.

Source: http://www.cpuc.ca.gov/General.aspx?id=5925

TIME OF USE (TOU) MANAGEMENT

Also called "retail energy time shift" and "energy arbitrage"

Source: https://www.eia.gov/todayinenergy/detail.php?id=6350

Shifting use from high cost periods to low cost periods

- On peak = price of electricity during the on peak periods (daytime)
- Off peak = price of electricity during off peak periods (nighttime)

RENEWABLES INTEGRATION

Energy storage is critical for the integration of large amounts of grid scale renewable generation.

Retail = price you pay per kWh
 Wholesale = price they pay you per kWh

SGIP program offers \$0.50/Wh to \$0.25/Wh

BTM SERVICES SUMMARY

Purpose	Power	Discharge	Usage	Payback (w/o incentives)
Resiliency and power quality	100 kW to 1 MW	≤ 15 minutes	Variable	NA (Critical to production)
Demand charge reduction	50 kW to 1 MW	1 to 4 hours	Daily	4-6 years
Demand response	50 kW to 1 MW	4 to 6 hours	Infrequent	>> equipment life
Time of use management	100 kW to 1 MW	4+ hours	Daily	>> equipment life
Renewables integration	100 kW to 500 MW	4+ hours	Daily	>> equipment life

FACILITY SCALE TECHNOLOGIES

COMMERCIAL

Lead acid batteries
 Lithium ion
 Sodium sulfur
 Flywheels
 Thermal

OTHER PROMISING TECHNOLOGIES

1. Flow batteries

- 2. Zinc air
- 3. Magnesium salt
- 4. Other?

UTILITY SCALE TECHNOLOGIES

Pumped hydro
 CAES

Most mature, lowest capital cost, widely used

- \$500 to \$700/kWh
- Widely accepted by building codes

LEAD ACID

- Advanced lead acid batteries improve performance
- Easily recycled

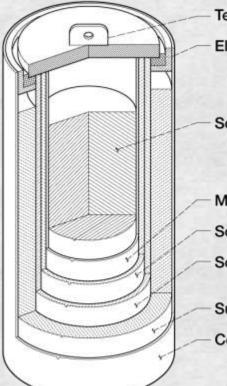
- Performance lacking
- 300 to 500 cycle life, 3 to 5 year shelf life
- efficiencies of 70% to 80%

LITHIUM ION

STATUS

~

- TESLA
- NYC building fire code approval seems imminent


- PRO
- High performance
- 2,000 to 5,000 cycles
- 10 to 15 year lifetime
- Efficiencies upwards of 98%

- High cost: \$500 to \$2,000/kWh
- Tesla Powerwall: 13.5 kWh for \$7,000 = \$500/kWh

SODIUM SULFUR (MOLTEN SALT)

Terminal

- Electrical insulation

Sodium chamber

Metal insert
Sodium electrode
Solid electrolyte

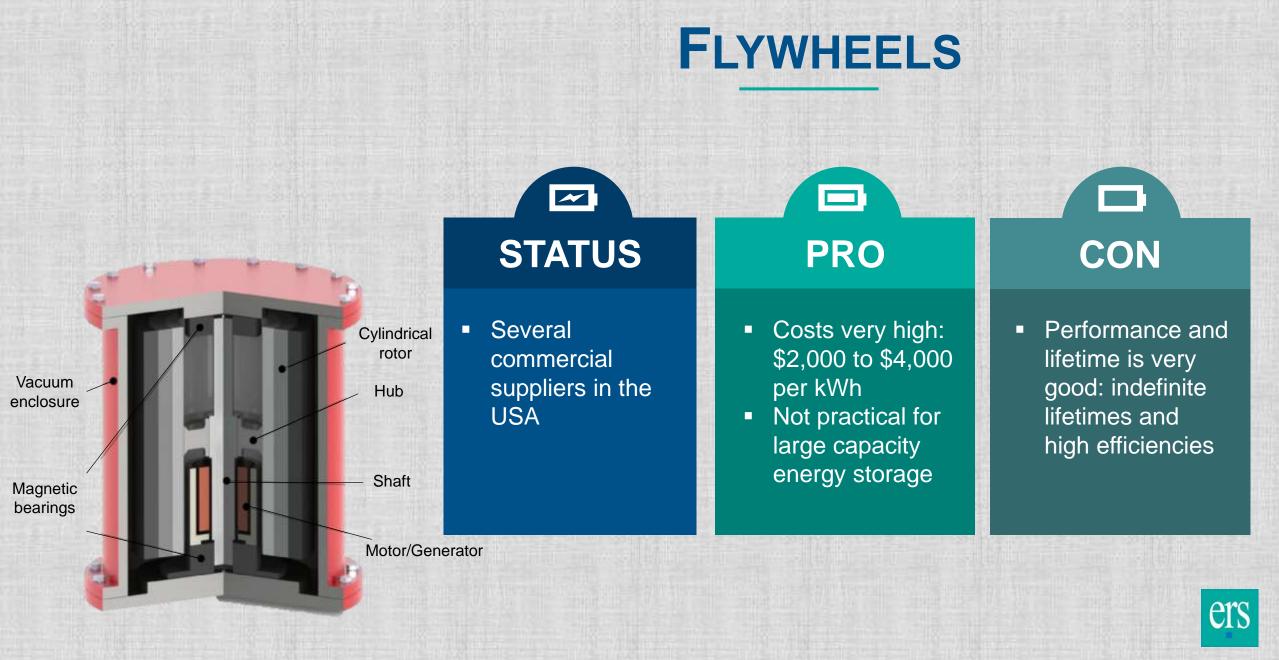
- Sulfur electrode

- Cell container

STATUS

Best suited to larger capacity

- Competitive cost: \$750 to \$2,000/kWh
- Not widely accepted by codes


Good performance

- 2,000 to 4,500 cycle life
- 10 to 15 year shelf life
- Efficiencies of 70% to 80%

- Limited manufacturers
- High operating temp (>300F)

ers

TECHNOLOGY SUMMARY

Market	Battery Type	Installed Energy Cost (\$/kWh)		Roundtrip	Useful Life	
		Outdoors	Indoors	Efficiency	Cycle Life	Expected Lifetime (Years)
S	Lead acid	\$400 - \$700	\$600 — \$1,000	70% – 80%	500 – 1,500	3 – 5
chnologi	Lithium ion	\$400 — \$2,000	\$500 – \$2,500	85% – 98%	2,000 – 5,000	10 – 15
Commercial (sa	Sodium Sulfur (salt)	\$750 — \$900	\$1,000 — \$2,000	70% – 80%	2,500 – 4,500	10 – 15
	Flywheel	\$2,000 - \$4,000	N/A	85% - 90%	> 10,000	>15 yrs

STATE OF EMERGING TECHNOLOGIES

Tech Type	Manufacturer	Status
Flow	Vionx, EnSync (ZBB), Redflow, and others	Many projects and manufacturers
Zinc Air	EOS	Partnered with Siemens, seem to be gaining momentum
Magnesium Salt	Aquion	Ch 11 recovery, April 2018 anticipated release
Liquid Metal	Ambri	Recent redesign, significant VC funding, not commercially available yet

TECHNICAL AND MARKET BARRIERS

High costs & limited lifetimes

Large, heavy, toxic

Fire hazards

Public perception of hazards

Challenging to find suitable locations in urban environments

Local fire codes are especially wary of newer commercial systems

THANK YOU!

Contact me to learn more about our work and this presentation.

jremillard@ers-inc.com

207-358-7046

www.ers-inc.com

Have you read Zondits today?

ADDITIONAL RESOURCES

- http://www.sandia.gov/ess/handbook.php
- http://www.ease-storage.eu/technologies.html
- http://amberkinetics.com/
- http://www.johnsoncontrols.com/content/us/en/products/powersolutions/battery-brands.html
- http://www.teslamotors.com/powerwall
- http://www.aquionenergy.com/
- http://www.sonnen-batterie.com/home/
- http://redflow.com/
- http://www.eosenergystorage.com/
- http://www.americanvanadium.com/vanadium-flow-batteries.php

ers