

04-23-25

Incorporating Nonenergy Benefits and Community Goals into Utility Cost Effectiveness Framework

Brian Tholl

Energy Services Director Fort Collins Utilities

Fort Collins, Colorado

• **Population 175,000**

Municipal Electric Utility

- 2,000 miles, underground distribution lines
- 55 square miles
- ~320 MW peak demand
- Time-Of-Day pricing for all residential
- Reliability 99.9965%

Climate Action Plan Goals

- 20% reduction by 2020 (actual 27%)
- 50% reduction by 2026
- 80% reduction by 2030
- Carbon neutral by 2050

Home to

- Colorado State University
- High tech industrial
- Bikes, boats and beers (26 breweries)

- Governed by City Council
- Utilities administered at the Direction of the Executive Director
- Policy Drivers:
 - Decarbonization:
 - 100 % Renewable Electricity by 2030
 - 80% carbon emissions reduction by 2030, carbon neutral by 2050
- Traditional Evaluations methods:
 - Utility cost test, Participant cost test
 - Levelized cost of conserved energy
 - Portfolio level evaluation

- Purpose:
 - To guide development of jurisdictions' cost effectiveness test(s) for conducting benefit-cost analyses (BCAs) for distributed energy resources (DERs)
- Managed and funded by E4TheFuture (with support from US DOE via LBNL)
- Multiple co-authors
 - Extensive understanding of regulatory economics
 - Specialized expertise with different DERs
- Advisory Group
 - 45+ individuals
 - Diversity of perspectives
 - Input on Manual outline and drafts

National Standard Practice Manual

For Benefit-Cost Analysis of Distributed Energy Resources

dnesp

NSPM Method for improving and updating structure

Table S-4. Potential Benefits and Costs of DERs: Host Customer

Туре	Host Customer Impact	Description					
	Host portion of DER costs	Costs incurred to install and operate DERs					
	Host transaction costs	Other costs incurred to install and operate DERs					
	Interconnection fees	Costs paid by host customer to interconnect DERs to the electricity grid					
	Risk	Uncertainty including price volatility, power quality, outages, and operational risk related to failure of installed DER equipment and user error; this type of risk may depend on the type of DER					
Host	Reliability	The ability to prevent or reduce the duration of host customer outages					
customer	Resilience	The ability to anticipate, prepare for, and adapt to changing conditions and withstand, respond to, and recover rapidly from disruptions					
	Tax incentives	Federal, state, and local tax incentives provided to host customers to defray the costs of some DERs					
	Host Customer NEIs	Benefits and costs of DERs that are separate from energy-related impacts					
	Low-income NEIs	Non-energy benefits and costs that affect low-income DER host customers					

Table S-5. Potential Costs and Benefits of DERs: Societal

Туре	Societal Impact	Description				
	Resilience	Resilience impacts beyond those experienced by utilities or host customers				
	GHG Emissions	GHG emissions created by fossil-fueled energy resources				
Societal	Other Environmental	Other air emissions, solid waste, land, water, and other environmental impacts				
	Economic and Jobs	Incremental economic development and job impacts				
	Public Health	Health impacts, medical costs, and productivity affected by health				
	Low-Income: Society	Poverty alleviation, environmental justice, and reduced home foreclosures				
	Energy Security	Energy imports and energy independence				

Fort Collins inputs and assumptions

PCT (Customer):	Total Bill Savings; Incremental Cost
 Positive net benefits: customer comes out ahead w/out rebates, negative needs rebate to offset. For IQ, negative net benefit needs to be offset with incentive. 	 Annual bill savings net of fossil and electric impacts; Positive is good; Upfront incremental cost to customer
RIM (Ratepayer):	Winter Peak Demand Impact
 Positive net benefits: ratepayer comes out ahead, negative is red flag Difference between Ratepayer – Customer = Max Incentive 	 Winter peak impact in kW \$1700/kW cost not included in other tests
Community:	Lifetime GHG Impacts
 Includes emissions and non-energy benefits Positive net benefits: community comes out ahead 	 Tons of CO2e saved over life of measure Results for measure implemented in 2022 with dropping electricity GHG impacts
CO2 Abatement Cost:	Composite Measure
 (Community Test without GHG)/(tons of GHG) Lower is cheaper; compare to \$76 in community test 	 4/5 are high priority 3/2 are low priority or no impact 1 is to be avoided

Example: Heat Pump replacement benefit / costs runs

										Winter	Lifetime GHG		
						coz				Peak	impacts	Composite	
						Abatement	Tota	al Bill	Incremental	Demand	(tons	Measure	
Measure	Туре 📑	РСТ	-	RIM 📼	Community 🔄	Cost 🔹	Savi	ings 👻	Cost -	Impact 👻	CO2e)	Score 🔹	
14 SEER CHP Gas furnace CAC CAC ROF 50% Disp Fort Collins	ков	Ş	(380)	\$ 1,236	\$ 2,//4	\$ (90)	Ş	12	Ş 450	U	15.9	4	
16 SEER CHP Gas furnace CAC CAC ROF - HE 50% Disp Fort Collins	ROB	\$	(196)	\$ 1,111	\$ 2,895	\$ (93)	\$	29	\$ 450	0	16.3	4	
16 SEER CHP Gas furnace CAC CAC ROF 50% Disp Fort Collins	ROB	\$ (2,196)	\$ 1,111	\$ 1,095	\$ 18	\$	29	\$ 2,250	0	16.3	3	
	200			÷ 1 071		4 404		25	÷ 1050		10.4	^	
14 SEER CHP Gas furnace CAC CAC ROF 80% Disp Fort Collins	ROB	\$	(381)	\$ 2,033	\$ 4,738	\$ (99)	\$	12	\$ 450	0	25.8	4	
16 SEER CHP Gas furnace CAC CAC ROF - HE 80% Disp Fort Collins	ROB	\$	10	\$ 1,777	\$ 5,010	\$ (103)	\$	49	\$ 450	0	26.7	5	
16 SEER CHP Gas furnace CAC CAC ROF 80% Disp Fort Collins	ROB	\$ (1,990)	\$ 1,777	\$ 3,210	\$ (35)	\$	49	\$ 2,250	0	26.7	4	
CC CHP Gas furnace CAC CAC ROF 80% Disp Fort Collins	ROB	Ş (.	5,027)	\$ 1,800	\$ 482	Ş 67	Ş	46	\$ 4,950	0	26.6	3	
14 SEER CHP Gas furnace CAC CAC ROF 100% Disp Fort Collins	ROB	\$ (1,681)	\$ 2,707	\$ 4,814	\$ (70)	\$	(17)	\$ 1,350	10	31.0	1	
16 SEER CHP Gas furnace CAC CAC ROF 100% Disp Fort Collins	ROB	\$ (3,135)	\$ 2,353	\$ 3,399	\$ (20)	\$	35	\$ 3,150	10	32.3	1	
CC CHP Gas furnace CAC CAC ROF 100% Disp Fort Collins	ROB	\$ (6,112)	\$ 2,337	\$ 713	\$ 63	\$	38	\$ 5,850	10	32.4	1	
14 SEER CHP Gas furnace CAC CAC ER 80% Disp Fort Collins	RET	\$ (3,247)	\$ 2,033	\$ 2,159	\$ 1	\$	12	\$ 3,029	0	25.8	3	
16 SEER CHP Gas furnace CAC CAC ER 80% Disp Fort Collins	RET	\$ (•	4,855)	\$ 1,777	\$ 631	\$ 61	\$	49	\$ 4,829	0	26.7	3	
CC CHP Gas furnace CAC CAC ER 80% Disp Fort Collins	RET	\$ (7,895)	\$ 1,802	\$ (2,097)	\$ 164	\$	46	\$ 7,529	0	26.6	2	
14 SEER CHP Gas furnace CAC CAC/Furnace ER 100% Disp Fort Collins	RET	\$ (5,692)	\$ 2,707	\$ 1,203	\$ 46	\$	(17)	\$ 4,960	10	31.0	1	
16 SEER CHP Gas furnace CAC CAC/Furnace ER 100% Disp Fort Collins	RET	\$ (7,146)	\$ 2,353	\$ (211)	\$ 92	\$	35	\$ 6,760	10	32.3	1	
CC CHP Gas furnace CAC CAC/Furnace ER 100% Disp Fort Collins	RET	\$(1	0,123)	\$ 2,337	\$ (2,898)	\$ 174	\$	38	\$ 9,460	10	32.4	1	

• Single most important opportunity for building electrification

- Best measures for existing furnace/AC are SEER 14 and SEER 16 ROB Heat Pumps. Early retirements are not as good, but OK (higher costs).
- Cold climate central heat pump economics are borderline high incremental cost is not justified by performance improvement at this time. This would
 change dramatically for 100% displacement case if they did not need electric resistance backup heat and price of carbon was very high.
- RIM test results are high, which pay for high rebates

- Collaboration and cross promotion with Fort Collins Healthy Homes Program
- Prioritize "Keep it" principles
 - Clean, Contaminant Free, Dry, Maintained, Pest Free, Ventilated, Comfortable, Safe
- Resources focused on Asthma, Radon, Mold, Lead, Pests, Asbestos, Chemical contaminants
- Enhanced online assessment
- https://healthyhomes.fcgov.com/

- All in-home assessment best practices:
 - Radon test deployment
 - Combustion appliance zone (CAZ) test with carbon monoxide monitoring
 - Garage to home air tightness measurements and recommendations

	2.0 10	Building	Air Tightnes	ss Testing							
CFM ₅₀	1,301		ACH ₅₀	4.7	XCEL ACH	0.42					
Blower Door Location	Front		Baseline		CFM ₅₀ /FT ² Floor Area	0.67					
Advanced Pressure Diagnostics (open-a-door)											
Garage	48	CF	M w/ door to	2,748							
CFM ₅₀ House/Garage	209		CFM ₅₀ Zo	1,651							
CFM ₅₀ Reduction Available	204	PERCENT	AGE OF TOT	AL LEAKAGE	16%						
Recommended Actions Interface between house and garage must be air sealed.											
Pressure Diagnostics Notes					2						
ELA	174	Sq. Inches	13.2 by 13.2 inch square h	ole							
New home ELA	110	Sq. Inches	0.8	Sq. Feet							

Promoting non-energy benefits through Installation Standards

- Incorporate into program standards and requirements methods
 - Measure based requirements
 - Incentive design
 - Inclusion of non-conditioned spaces
- Photo documentation for quality assurance

Appendix P: Photo documentation guide

The purpose of this photo documentation guide is to establish a great paper trail of the before and after on our more important details in the program.

<u>Efficiency Works Rebate Service Provider Guide</u>

Efficiency Works Homes Retrofit Rebate Service Provider Guide

• IEQ Study goal:

 To improve our understanding of the connections between community health and well-being from energy efficiency upgrades

• Study Homes:

- 80 homes complete participation by end of 2021
- Mix of owner- and renter-occupied homes
- Mix of assessment only (the control group) & completed insulation and air sealing project (the test group)

Data Collection

IEQ

AWAIR Omni Sensor

- PM_{2.5}, TVOC, T, RH, CO₂
- 15-min resolution
- 5 sensors per household

Energy-use

Sensor energy monitor

- Electricity usage per household device
- 1-min resolution

*Residential Environmental Quality & Energy-Use: Metrics for Energy Efficiency Retrofits Purgiel, A., Carter, E., Good, N., Guzman Diaz, F., Mehaffy, J., Montague, T.

Exploring other Community values and drivers

- Real estate ally network promoting value of energy efficiency
- Virtual Home tour highlighting efficiency equipment

Where we're headed next

- Non-energy benefits become more and more valuable in all electric homes
- Continue prioritizing historically underrepresented groups in program design
- Continued community education

Program direct mail example:

MAKE YOUR HOME WORK FOR YOU

Take advantage of our streamlined upgrade process and no-money-down financing to improve the health, comfort, safety and energy efficiency of your home.

EPIC HOMES Ell Efficiency Works

Thank you!

Brian Tholl, Energy Services Director <u>Btholl@fcgov.com</u> 970.416.4326