#### Lessons Learned from New Technologies & Customer Expectations Eric Olson Manager, Emerging Technology and Product Management April 20, 2023

CLASSIFICATION LEVEL: PUBLIC

















#### MARKET INTELLIGENCE

### **Narket Transformation**



Time

### New Technologies and Customer Adoption

- Why do customers select a new product?
  - Addresses a need or a want
  - Customers adopt a technology due to the benefits, not the feature
  - Same or better experience than their current product
    - o Noise
    - Reliability/longevity
    - Reduced cost of ownership, etc.
  - More energy efficient



5 days.

3 days.



| ©2023 Copyright NEEA.

#### When Reality Meets Expectations

- There is a long list of products that didn't meet consumer expectations and failed
- The Museum of Failure provides some examples...



#### **DeLorean DMC-12**

- Missed its target price point
- Marketed as a luxury sports car
  - Severely underpowered engine
  - Slow
  - Stainless steel was difficult to maintain
- On the market for 24 months



- Fat substitute with zero calories
- Promise to eat the foods you love with reduced calories
- The body cannot absorb it resulting in painful gastric side effects
- On the market for 48 months



Image courtesy Museum of Failure

#### **Bow Do We Reduce the Risk?**

- Lab Testing
  - Industry standard
  - Customized
- Field studies
- Manufacturer claim validation
- Test procedure validation



### **Compact Fluorescent Lights (CFLs)**



Image courtesy General Electric

Image courtesy Sylvania

## **Compact Fluorescent Lights (CFLs)**



Image courtesy General Electric

Image courtesy Sylvania

|                  | Incandescent | CFL          |
|------------------|--------------|--------------|
| Price            | \$           | \$\$\$       |
| Life (hours)     | 3,000        | 10,000       |
| Lifetime Cost    | -            | 1            |
| Quality of Light | $\odot$      | ↓            |
| Noise Level      | $\odot$      | $\checkmark$ |
| Dimmable         | Yes          | No           |
| Three Way        | $\odot$      | ↓            |
| Disposal         | $\odot$      | ↓            |

## **Compact Fluorescent Lights (CFLs)**



Image courtesy familyhandyman.com

- How the market responded
  - Development of industry standards (ANSI/Illuminating Engineering Society)
  - ENERGY STAR specification
    - Coloring Rendering Index
  - Bulb recycling programs developed by waste disposal companies
  - Product improvements color quality, noise, dimmable, 3-way bulbs





|                      | Conventional | HP Dryer    |
|----------------------|--------------|-------------|
| Price                | \$-\$\$      | \$\$-\$\$\$ |
| Energy<br>Efficiency | -            | 1           |
| Ventless             | - /↓         | 1           |
|                      |              |             |
|                      |              |             |

14 | ©2023 Copyright NEEA.





Image courtesy Mr. Washy Washy You Tube Channel



15 | ©2023 Copyright NEEA.

# Heat Pump Dryers

- The compact heat pump pairs take longer to wash and dry the 8.45 lb load (Eco and H-Duty) compared to all the conventional pairs.
- For the loads that are normalized to the washer basket size (Max), the heat pump pairs have a shorter cycle time than the ENERGY STAR qualified conventional pairs
- Note that Max is maximum load size as defined by the washer J2 test procedure along with cold wash and rinse in the washer and DOE D2 settings (Eco) in the dryer













### **Water Pump Dryers Summary**

- HP dryers can provide significant energy savings
- Consumers need to be educated about the difference in performance and maintenance
  - Cycle Time Two filters v/one filter
  - Load Sizes Energy use
- Product Support is important for the customer experience



#### Heat Pump Water Heaters





| Circa 2010                       | Resistance       | HPWH            |
|----------------------------------|------------------|-----------------|
| Price                            | \$               | \$\$\$          |
| Height (50 gal)                  | 48 in-59 in      | 75.5 in         |
| Noise                            | Virtually silent | 54 db           |
| Min. Ambient Temp.               | -                | 42 °F           |
| Sales & Installer<br>Familiarity | High             | Low             |
| Replacement Time                 | ~ 2.5 hours      | ~ 3.5-4.5 hours |
| "On the truck"                   | Yes              | No              |
| Condensate Line                  | No               | Required        |
| Venting                          | -                | Required        |





### **Bar Pump Water Heaters**

- Development of Advance Water Heating Specification<sup>5, 6</sup> that specifically calls out performance standards for cooler water and air performance standards
- Worked closely with key market actors to improve performance in cold climates resulting in marked improvements
- Studied the interaction of HPWHs and space conditioning<sup>2, 3</sup>
- Field studies showing performance of HPWHs in colder climates as part of the Regional Study of over 100 HPWHs installed in the four NW states
- Partnered with OEMs on installation recommendations for colder climates and confined space applications<sup>10</sup>
- Built and continually update recommendation materials for market actors (Architects, Designer, Installers, Raters, Code Officials and Owners) of how to install and commission HPWHs in single family and multifamily homes<sup>1</sup>

#### **Cold-Climate Heat Pump Water Heater Performance**

- Field tests prove HPWHs operate efficiently at low ambient air temperatures<sup>(4)</sup>
- Field measurements were performed with products available at the time (*Tier 1 and 2 of AWHS*(5.6)).
- Current HPWHs have even better performance (AWHS Tier 3 and 4).
  - Greater heat pump efficiency
  - Reduced sound level
  - Lower minimum ambient temperature operation
  - Less electric resistance operation
- Lab tests confirm findings from field studies showing high COPs even at 37°F<sup>(Z,8)</sup>



After a 15-gal. draw, this water heater ran a **COP of 2.5** when reheating the tank in 37° ambient air lab testing

#### **Fleet Efficiency HPWH Then and Now**

|                         | 2013      | 2019          |
|-------------------------|-----------|---------------|
| NW Regional Sales       | ~2,500    | +15,000       |
| AWHS Tier               | Tier 1    | Tier 4        |
| Manufacturer Brands     | 4         | 14            |
| Demand Response Capable | 0%        | 60%           |
| loise Level             | 54 db     | 48 db         |
| leet Efficiency (UEF)   | 2.7       | 3.5           |
| Iin Operating Temp.     | 42 °F     | 35 °F         |
| verride Expiration      | No        | 72 hours      |
| PWH Wattage             | 700 watts | 350-450 watts |
| irst Hour Rating        | 64.3 gal  | 66.3 gal      |
| Product Height          | 75.5 in   | 61 in         |
| Air Volume Requirements | Vented    | Louvered door |
| Available Voltage       | 240       | 120/240       |
|                         |           |               |



New generation HPWHs are quieter than your average refrigerator.



# **Example 2** Lessons Learned

- Validate manufacturer claims
- "Off the shelf" doesn't mean always reliable
- Understand customer expectations, make sure the product meets the application
- Communicate product experience differences
- Ensure that the supply chain is ready from manufacturer to designers to installer to service network





# Appendix

#### **HPWH References**

#### HPWH Handbook – Summary paper on all technical research as of 2018

 Widder, S. and Larson, B. 2018. *The HPWH Handbook*. American Council for an Energy Efficient Economy 2018 Summer Study on Buildings <u>https://www.aceee.org/files/proceedings/2018/index.html#/paper/eventdata/p035</u>

#### Interaction factor

2) Widder, S., C. Metzger, J. Petersen, and J. McIntosh. 2017. Interaction between Heat Pump Water Heaters or Other Internal Point Source Loads and a Central Heating System. Report #E17-302. Portland, OR. NEEA.

http://www.neea.org/docs/default-source/reports/interaction-between-heat-pumpwater-heaters-and-heating-system.pdf?sfvrsn=4

3) Larson, B. 2018. Understanding HPWH Interaction with Space Conditioning Systems in the Field. Presented at 2018 American Council for an Energy Efficient Economy Hot Water Forum. https://www.aceee.org/sites/default/files/pdf/conferences/hwf/2018/5b-larson.pdf

#### **HPWHs field study**

4) Ecotope. 2015. *Heat Pump Water Heater Model Validation Study*. NEEA Report #E15-306, Portland, OR. <u>http://neea.org/docs/default-source/reports/heat-pump-water-heater-saving-validation-study.pdf?sfvrsn=8</u>

#### Advanced Water Heating Specification

- 5) Advanced Water Heating Specification (AWHS) https://neea.org/resources/advanced-water-heating-specification
- 6) AWHS Qualified Products List https://neea.org/img/documents/HPWH-qualified-products-list.pdf

#### **HPWH lab tests**

- 7) Larson B., and Kvaltine, N.. 2015. Laboratory Assessment of GE GEH50DFEJSRA Heat Pump Water Heater. NEEA Report # E15-013. Portland, OR. <u>https://neea.org/resources/laboratory-assessment-of-rheem-generation-5-seriesheat-pump-water-heaters</u>
- 8) Kvaltine, N. and Larson, B. 2015a. *Laboratory Assessment of A. O. Smith HPTU Series Heat Pump Water Heaters*. NEEA Report #E15-306. Portland, OR. https://neea.org/resources/hpwh-lab-report-ao-smith-hptu-12-09-2015

**Residential Building Stock Assessment (RBSA)** 

- 9) https://neea.org/data/residential-building-stock
- Larson, B. and Larson, S, 2022 Heat Pump Water Heaters in Small Spaces Lab Testing: "The Amazing Shrinking Room." Report: #E22-334. Portland, OR. NEEA

https://neea.org/resources/heat-pump-water-heaters-in-smallspaces-lab-testing-the-amazing-shrinking-room

### **WARPONDER References & Resources**

- High Efficiency Clothes Dryers Test Procedure and Qualified Products List, <u>https://neea.org/our-work/high-efficiency-clothes-dryers</u>
- Foster Porter, S., Denkenberger, D., Fulbright, V., 2022, *Perfect Pairings? Testing the Energy Efficiency of Matched Washer-Dryer Sets.* Report #E22-236, Portland, OR. NEEA
  <a href="https://neea.org/resources/perfect-pairings-testing-the-energy-efficiency-of-matched-washer-dryer-sets">https://neea.org/resources/perfect-pairings-testing-the-energy-efficiency-of-matched-washer-dryer-sets</a>
- Foster Porter, S., Denkenberger, D., Fulbright, V., 2021, Coming Clean: Revealing Real-World Efficiency of Clothes Washers. Report 20-317, Portland, OR. NEEA <u>https://neea.org/resources/coming-clean-revealing-real-world-efficiency-of-clothes-washers</u>
- Hannas, B., Gilman, L., 2014, Dryer Field Study, Report #E14-287, Portland, OR. NEEA https://neea.org/resources/rbsa-laundry-study
- Dymond, C., 2018, Heat Pump Clothes Dryers in the Pacific Northwest Abridged Field & Lab Study Report. Report #E18-305, Portland, OR. NEEA <u>https://neea.org/resources/heat-pump-clothes-dryers-in-the-pacific-northwest-abridged-field-lab-study-report</u>